Revascularization in Diabetes: New Insights from the BARI 2D Angioplasty Summit 2010 Seoul, Korea

> David R. Holmes, MD Mayo Clinic Rochester, MN

Presenter Disclosure Information

David R. Holmes, Jr., M.D.

"Revascularization in Diabetes: New Insights from the BARI 2D "

The following relationships exist related to this presentation:

No relationships to disclose

Korea and Diabetes

- Korean National Health and Nutrition Survey
- Cross Sectional Nationally Representation Survey Diabetes and Impaired Fasting Glucose

Kim SM et al, Diabetes Care 29:226-231, 2006

VIA SATELLITE

Angioplasty not best option for diabetics

By Doug Levy USA TODAY

Diabetics with heart disease are better off with bypass surgery than angioplasty, the National Heart, Lung and Blood Institute said Thursday.

A study of 1,829 people with blockages in two or more heart Dr. George Sopko, an NHLBI cardiologist. However, the recommendation only applies to patients with both severe diabetes and two or more blocked coronary arteries.

Such patients who already have had angioplasty should be monitored carefully, he says, "but there's no need to panic."

BARI 2D Clinical Trial

Compare treatment strategies for patients with

- Type 2 diabetes mellitus
- Documented CAD suitable for elective revascularization (1 or more significant lesions)
- Documented ischemia
- No prior CABG or PCI within the last 12 months

Revascularization Decision BARI 2D

Cardiologist a priori selected revascularization method based on clinical and angiographic factors

Percutaneous coronary intervention or Coronary artery bypass graft surgery

BARI 2D Trial: Study Design

2368 patients with mild to moderate CAD and Type 2 diabetes prior to randomization. Prospective. Randomized. Mean follow-up 5.3 years

Primary Endpoint: Death (from any cause)

Secondary Endpoint: Composite of Death, MI, or Stroke

BARI 2D Study Group, NEJM 2009

Angiographic Characteristics 2,368 Randomized Patients

CAD diseased vessels

0/1	33%
2	36%
3	31%
Myocardial jeopardy (mean ± SD)	44±24
Proximal LAD (>50% stenosis)	13%
Total occlusion	41%
Abnormal LV function (<50%)	17%

MAYO CLINIC

Kim LJ et al, JACC Intv 2:384-92, 2009

BARI 2D

- Selection of CABG rather than PCI
 - Based largely on greater extent, severity and complexity of CAD
 - More likely in patients >65 years
 - Less likely in patients with prior PCI
 - More likely in non U.S. centers
 - Less likely after introduction of DES

JACC: CARDIOVASCULAR INTERVENTIONS © 2009 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC. VOL. 2, NO. 5, 2009 ISSN 1936-8798/09/536.00 DOI: 10.1016/j.jcin.2009.01.009

Conclusions: The majority of diabetic patients with multivessel disease were selected for PCI rather than CABG. Preference for CABG over PCI was largely based on angiographic features related to the extent, location, and nature of CAD, as well as geographic, demographic, and clinical factors. (Bypass Angioplasty Revascularization Investigation in Type 2 Diabetes [BARI 2D]; NCT00006035)

> of coronary artery bypass graft (CABG) surgery versus percutaneous coronary intervention (PCI) in diabetic patients with multivessel coronary artery disease (CAD) in the BARI 2D (Bypass Angioplasty Revascularization Investigation in Type 2 Diabetes) trial.

> **Background** Factors guiding selection of mode of revascularization for patients with diabetes mellitus and multivessel CAD are not clearly defined.

> **Methods** In the BARI 2D trial, the selected revascularization strategy, CABG or PCI, was based on physician discretion, declared independent of randomization to either immediate or deferred revascularization if clinically warranted. We analyzed factors favoring selection of CABG versus PCI in 1,593 diabetic patients with multivessel CAD enrolled between 2001 and 2005.

Results Selection of CABG over PCI was declared in 44% of patients and was driven by angiographic factors including triple vessel disease (odds ratio [OR]: 4.43), left anterior descending stenosis \geq 70% (OR: 2.86), proximal left anterior descending stenosis \geq 50% (OR: 1.78), total occlusion (OR: 2.35), and multiple class C lesions (OR: 2.06) (all p < 0.005). Nonangiographic predictors of CABG included age \geq 65 years (OR: 1.43, p = 0.011) and non-U.5. region (OR: 2.89, p = 0.017). Absence of prior PCI (OR: 0.45, p < 0.001) and the availability of drug-eluting stents conferred a lower probability of choosing CABG (OR: 0.60, p = 0.003).

Conclusions The majority of diabetic patients with multivessel disease were selected for PCI rather than CABG. Preference for CABG over PCI was largely based on angiographic features related to the extent, location, and nature of CAD, as well as geographic, demographic, and clinical factors. (Bypass Angioplasty Revascularization Investigation in Type 2 Diabetes [BARI 2D]; NCT00006305) (J Am Coll Cardiol Intv 2009;2: 384–92) © 2009 by the American College of Cardiology Foundation

BARI 2D Trial: Primary Endpoint

 The 5-year death rate for the group receiving revascularization plus optimal medical therapy was 13.2% vs. 13.5% in the group receiving optimal medical therapy alone

 The difference between the two treatment groups did not reach statistical significance

WAYO CLINIC

BARI 2D Study Group, NEJM 2009

Prompt Revascularization vs Medical Therapy

3010909-16

BARI 2D Trial: Secondary Endpoint

 The rates of MI, stroke and the combined secondary endpoint of death, MI, and stroke were similar between the group receiving revascularization plus optimal medical therapy vs. the group receiving optimal medical therapy alone.

 The difference between the two treatment groups for the combined secondary endpoint of death, MI, and stroke did not reach statistical significance (p=0.70)

BARI 2D Study Group, NEJM 2009

PCI Intended Revascularization Stratum Lower Risk Patients

3010909-18

CABG Intended Revascularization Stratum Higher Risk Patients

3010909-19

Insulin Sensitization vs Insulin Provision

BARI 2D Primary Conclusion

Overall similar mortality and CV events

- Prompt revascularization vs delayed or no revascularization
- Insulin sensitization vs insulin provision

Among high-risk patients selected for CABG

 Prompt revascularization reduces major CV events compared with delayed or no revascularization (P=0.01)

Among lower-risk patients selected for PCI

 Prompt revascularization and delayed or no revascularization had similar rates for major CV events

Cumulative Rate of First Revascularization

Conclusions

- Optimal medical therapy is required for diabetic patients with CAD
- Despite optimal medical therapy, 42% of diabetic patients will still undergo revascularization during 5 years FU
- Revascularization strategies chosen depend in large part on severity and extent of disease
- Clinical decision making still works

Another problem caused by deforestation

There are no facts, only interpretations.

-Friedrich Nietzsche

There are no facts, only interpretations.

-Friedrich Nietzsche

Life is better served without a helping of diabetes.

Revascularization Decision BARI 2D

Cardiologist a priori selected revascularization method based on clinical and angiographic factors

Percutaneous coronary intervention or Coronary artery bypass graft surgery

Death/MI/Stroke Among Medical Assigned Patients

5-Year Clinical Event Rates CABG Intended Revascularization Stratum n=763

BARI 2D Primary Conclusions

Similar mortality and major cardiovascular events, overall for

- Prompt revascularization vs delayed or no revascularization
- Insulin sensitization vs insulin provision

BARI 2D Primary Conclusions

Among high-risk patients selected for CABG

 Prompt revascularization reduces major cardiovascular events compared with delayed/no revascularization (P=0.01)

Among lower-risk patients selected for PCI

 Prompt revascularization and delayed/no revascularization had similar rates for major cardiovascular events

4 Treatment Combinations 5-Year Clinical Event Rates – All Patients (n=2,368)

	All-cause mortality		Death/MI/stroke	
	Prompt revasc	Intensive medical	Prompt revasc	Intensive medical
Insulin sensitization (%	11.2 %)	12.3	20.3	24.1
Insulin provision (%)	12.2	12.0	25.2	24.1
Interaction P	0.78		0.	23

Major Cardiovascular Events

PCI Intended Stratum

CABG Intended Stratum

Adverse Event Rates Glycemic Randomized Treatment Assignment

	IS	IP	
	n=1,154	n=1,156	
Adverse event	(%)	(%)	P
Hypoglycemia			
Any	53.3	73.8	0.001
Severe	5.9	9.2	0.003
Peripheral edema	56.6	51.9	0.02
Congestive heart failu	ıre		
All patients	22.6	20.0	0.13
Hx of CHF*	67.2	63.5	0.65
No Hx of CHF*	19.4	16.6	0.09
Bone fractures	7.6	6.9	0.54

*141 pt had a Hx of CHF and 2,035 had no Hx of CHF

Additional BARI 2D Observation

- Insulin sensitization appeared to enhance the benefit of revascularization particularly among the those selected for CABG
- Insulin sensitization was associated with lower BMI, higher HDL and lower rates of severe hypoglycemia
5-Year All-Cause Death Rates Difference Between BARI 2D Randomized Treatment Groups

5-Year Major Cardiovascular Event Rates Difference by BARI 2D Randomized Treatment Groups

NIDDK Fact Sheet

- In the United States, 24 million people have diabetes
- At least 65% of people with diabetes die of heart disease or stroke
- Heart disease death rates among people with diabetes are 2-4 times higher than rates among adults without diabetes

BARI 2D Trial: Background

- Patients with Type 2 diabetes have an increased risk of suffering a cardiovascular event over non-diabetic patients.
- The success of coronary revascularization in reducing myocardial infarction and death in diabetic patients with chronic stable angina has not been established.
- Similarly, it is unclear if insulin sensitization therapy offers benefits over insulin provision therapy in reducing cardiovascular events.

BARI 2D Primary and Principal Secondary Endpoints

All-cause mortality

 Major cardiovascular events: composite of death/MI/stroke

Average follow-up 5.3 years

Enrollment Flow Diagram

BARI 2D

The Bypass Angioplasty **Revascularization Investigation 2 Diabetes (BARI 2D) Trial is sponsored** by the National Heart, Lung and Blood **Institute (NHLBI) and receives** substantial funding from the National **Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)**

Demographic and Clinical History 2,368 Randomized Patients

Age (mean yr)	62.4
Female (%)	30
Ethnic/racial minority (%)	34
Myocardial infarction Hx (%)	32
Congestive heart failure Hx (%)	7
Hx of stroke or TIA (%)	10
Peripheral artery disease (%)	24

Cardiac Clinical Characteristics 2,368 Randomized Patients

	%
Angina status	
No angina or anginal equivalents	18.0
Anginal equivalents	21.4
Stable angina CCS 1-2	42.5
Stable angina CCS 3-4	8.6
Unstable angina	9.5
Prior PCI	20.0
Prior stent	13.0
Prior CABG	6.0

Diabetes Clinical History 2,368 Randomized Patients

Duration of diabetes (mean yr)	10.4
<6 months	8%
6 months-5 years	25%
5-10 years	24%
10-20 years	29%
≥20 years	14%
HbA _{1c} % (mean)	7.7
Receiving insulin	28%
Micro or macroalbuminuria (ACR >30)	33%
Neuropathy (MNSI clinical score >2)	50%

Risk Factor Status Among BARI 2D Patients at Baseline

BARI 2D Trial: Baseline Characteristics

Characteristic	Revasc (CABG + OMT or PCI + OMT) (n=1176)	OMT (n=1192)
Age (yrs±SD)	62.3 ± 8.8	$\textbf{62.4} \pm \textbf{9.0}$
Male (%)	70.4	70.3
HbA1c (% mean±SD)	7.6 ± 1.6	7.7 ± 1.6
Duration of diabetes (yrs mean±SD)	10.2 ± 8.5	10.7 ± 8.8
History of MI (%)	31.7	32.4
History of CHF (%)	7.1	6.2
Cerebrovascular event (%)	9.5	10.0
Peripheral artery disease (%)	23.7	23.7
Prior revascularization (%)	22.9	24.2

BARI 2D Study Group, NEJM 2009

BARI 2D Trial: Baseline Characteristics

Characteristic	Insulin Sensitization (n=1183)	Insulin Provision (n=1185)
Age (yrs±SD)	62.3 ± 9.2	$\textbf{62.5} \pm \textbf{8.7}$
Male (%)	70.1	70.6
HbA1c (% mean±SD)	7.6 ± 1.6	7.7 ± 1.6
Duration of diabetes (yrs mean±SD)	10.1 ± 8.4	10.8 ± 8.9
History of MI (%)	32.6	31.5
History of CHF (%)	6.7	6.6
Cerebrovascular event (%)	9.9	9.6
Peripheral artery disease (%)	23.9	23.5
Prior revascularization (%)	23.1	24.1

BARI 2D Trial: Secondary Endpoint

The rates of MI, stroke and the combined secondary endpoint of death, MI, and stroke were similar between the group insulin sensitization therapy vs. the group receiving insulin provision therapy.

The difference between the two treatment groups for the combined secondary endpoint of death, MI, and stroke did not reach statistical significance (p=0.13)

BARI 2D Study Group, NEJM 2009

BARI 2D Trial: Limitations

 Patients who are at high risk for MI and, therefore, stand to benefit the most from revascularization were excluded from the trial.

 The broad applicability of BARI 2D is limited by the fact that the patient population selected represents only a small subset of patients with diabetes and coronary artery disease.

Banning AP et al, JACC 55:2010

SYNTAX Trial With and Without

	Non-Diabetic n=1348	Diabetic n-452	P
Male	79.9	71.0	<0.001
BMI	27.5	29.5	<0.001
Current tobacco	21.7	15.8	<0.006
CHF	3.7	7.4	0.001
PVD	8.2	14.6	<0.001

SYNTAX Trial With and Without

	Non-Diabetic n=1348	Diabetic n-452	Р	
No. of lesions	4.3 ± 1.8 (1340)	4.6 ± 1.8 (449)	0.003	
Left main, any	35.9 (480/1338)	29.0 (130/449)	0.007	
Left main only	3.9 (52/1338)	2.2 (10/449)	0.10	:2010
Left main +1 V	5.6 (75/1338)	4.0 (18/449)	0.19	VCC 55
Left main + 2 V	12.0 (160/1338)	11.1 (50/449)	0.64	it al, J∕
Left main + 3 V	14.4 (193/1338)	11.6 (52/449)	0.13	ig AP e
3-V disease only	64.1 (858/1338)	71.0 (319/449)	0.007	Bannin

Banning AP et al, JACC 55:2010

MAYO CLINIC

SYNTAX Trial Diabetic Patient Outcomes - 1 Year F/U

WAYO CLINIC

Banning AP et al, JACC 55:2010

SYNTAX Trial Diabetic Patient Outcomes - 1 Year F/U

	Medic	Medically Treated Diabetes (n=452)		
	CABG n=221	PES n=231	RR (95% CI)	P
Composite MACCE	14.2 (29/204)	26.0 (59/227)	1.83 (1.22-2.73)	0.003
Safety Outcomes				
Death/CVA/MI (composite)	10.3 (21/204)	10.1 (23/227)	0.98 (0.56-1.72)	0.96
Death	6.4 (13/204)	8.4 (19/227)	1.31 (0.67-2.59)	0.43
Cardiac death	3.9 (8/204)	7.0 (16/227)	1.80 (0.79-4.11)	0.16
CVA	2.5 (5/204)	0.9 (2/227)	0.36 (0.07-1.83)	0.26
MI	4.4 (9/204)	4.8 (11/227)	1.10 (0.46-2.60)	0.83
J MATO CLINIC			Banning AP et al,	JACC 55:201

6

SYNTAX Trial Non-Diabetic Patient Outcomes - 1 Year F/U

Banning AP et al, JACC 55:2010

SYNTAX Trial Non-Diabetic Patient Outcomes - 1 Year F/U

SYNTAX Trial Non-Diabetic Patient Outcomes - 1 Year F/U

		No Diabetes (n=1,348)		
	CABG n=676	PES n=672	RR (95% CI)	Р
Composite MACCE	11.8 (76/645)	15.1 (100/664)	1.28 (0.97-1.69)	0.08
Safety Outcomes				
Death/CVA/MI (composite)	6.8 (44/645)	6.8 (45/664)	0.99 (0.67-1.48)	0.97
Death	2.6 (17/645)	3.0 (20/664)	1.14 (0.60-2.16)	0.68
Cardiac death	1.6 (10/645)	2.6 (17/664)	1.65 (0.76-3.58)	0.20
CVA	2.2 (14/645)	0.5 (3/664)	0.21 (0.06-0.72)	0.006
MI	2.9 (19/645)	4.8 (32/664)	1.64 (0.94-2.86)	0.08
			Banning AP et al.	JACC 55:201

n

		No Diabetes (n=1,348)		
	CABG n=676	PES n=672	RR (95% CI)	P
Graft occlusion/ST	3.8 (23/601)	3.4 (22/639)	0.90 (0.51-1.60)	0.72
Acute (≤ 1 d)	0.5 (3/664)	0.3 (2/666)	0.66 (0.11-3.96)	0.69
Subacute (2-30 d)	0.5 (3/662)	2.1 (14/665)	4.65 (1.34-16.09)	800.0
Late (31-365 d)	2.6 (17/653)	1.1 (7/654)	0.41 (0.17-0.98)	0.04
Efficacy Outcomes				
Repeat Revasc	5.7 (37/645)	11.1 (74/664)	1.94 (1.33-2.84)	<0.001
PCI	4.8 (31/645)	9.6 (64/664)	2.01 (1.32-3.04)	<0.001
CABG	1.1 (7/645)	2.4 (16/664)	2.22 (0.92-5.36)	0.07

anning AP et al, JACC 55:2010

	Medically Treated Diabetes (n=452)			
	CABG n=221	PES n=231	RR (95% CI)	Р
Graft occlusion/ST	2.2 (4/186)	2.9 (6/209)	1.33 (0.38-4.66)	0.76
Acute (≤ 1 d)	0.0 (0/206)	0.0 (0/230)		
Subacute (2-30 d)	0.0 (0/206)	1.8 (4/228)		0.13
Late (31-365 d)	2.0 (4/201)	0.9 (2/220)	0.46 (0.08-2.47)	0.43
Efficacy Outcomes				
Repeat Revasc	6.4 (13/204)	20.3 (46/227)	3.18 (1.77-5.71)	<0.001
PCI	4.4 (9/204)	16.7 (38/227)	3.79 (1.88-7.65)	<0.001
CABG MAYO CLINIC	2.0 (4/204)	4.0 (9/227)	2.02 (0.63-6.47)	0.22

Randomized Clinical Trials of Revasc & DM

	Diabeti	c Patients	All Diabetic Patients
	BARI n=353	SYNTAX n=452	BARI 2D n=2368
Randomization	PCTA vs CABG	DES vs CABG	All revasc vs Med Rx
F/U reported	10 yrs	1 yr	5 yrs
PCI method	PTCA	Taxus DES	35% DES
Patients	Multivessel CAD	LMCA, MV CAD	Elective, LM excluded
Primary endpoint	Death 5 yrs	Death, MI, stroke or revasc 1 yr	Death 5 yrs
Death	PTCA: 34.5% CABG: 19.4% p=0.002	DES: 8.4% CABG: 6.4% p=0.43	All revasc: 11.7% Med Rx: 12.2% p=0.97

Randomized Clinical Trials of Revasc & DM

	Diabe	tic Patients	All Diabetic Patients	
	BARI n=353	SYNTAX n=452	BARI 2D n=2368	
Death MI Stroke	Not reported	At 1 yr: DES: 10.1% CABG: 10.3% p=0.96	At 5 yrs: All revasc: 22.8% Med Rx: 24.1% p=0.70	
Death MI Stroke Revasc	Not reported	DES: 26.0% CABG: 14.2% p=0.003	Not reported	
Repeat Revasc	PTCA: 69.9% CABG: 11.1% (at 7 yrs)	DES: 20.3% CABG: 6.4% p<0.001	42% of Med Rx pts crossover to revasc group	

SYNTAX Trial What Can We Say

 There is still room for good clinical judgment in decision making

Risk Factor Control

Risk Factor Measures

	Base-	3 year			
Mean	line	Rev	Med	IS	IP
LDL (mg/dL)	96	81	79	79	80
HDL (mg/dL)	38	41	41	42	40
SBP (mm Hg)	132	126	125	125	126
DBP (mm Hg)	75	70	70	70	71
BMI (kg/m²)	31.7	32.0	32.2	31.7	32.5

Drug Use Randomized Treatment Assignment

Insulin Sensitization Group

Insulin Provision Group

📕 IS drugs 📕 IP drugs

Diabetes Medication Use

		<u> </u>		
Hedication	Baseline (%)	IS (%)	IP (%)	
Metformin	54	75	10	
Thiazolidinedion	e 19	62	4	
Rosiglitazone	12	55	3	
Sulfonylurea	53	18	52	
Insulin	28	28	61	
HbA1c Mean Over Time

Cardiovascular Medication Use

		3 year		
Medication	Baseline (%)	Revasc (%)	Medical (%)	
Beta blocker	73	84	88	
ACE/ARB	77	91	92	
Statin	75	95	95	
Aspirin	88	94	94	

Summary

- Excellent risk factor control
- Randomized treatment strategies effectively implemented for
 - **Prompt revascularization vs delayed/no revascularization**
 - Insulin sensitization vs insulin provision

Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D)

5-Year Results

American Diabetes Association Conference June 7, 2009

> Robert Frye, MD Mayo Clinic – Rochester

3010909-76

BARI 2D Primary and Principal Secondary Endpoints

 All-cause mortality Major cardiovascular events

Composite of death/MI/stroke

Average follow-up 5.3 years

Enrollment Flow Diagram

Baseline Characteristics by Randomization Stratum

	PCI intended n=1,605	CABG intended n=763
Age (mean years)	62.0	63.2
Male (%)	68.0	76.0
Prior revasc (%)	29.0	13.0
Proximal LAD (%)	10.0	19.0
LVEF <50 (%)	18.0	18.0
3 vessel disease (%)	20.0	52.0
Total occlusion (mean number)	0.48	0.84
Myocardial jeopardy (mean %)	37.2	59.7

BARI 2D in the Context of Current Clinical Practice and Recent Trials

How did BARI 2D inclusion criteria fit with current guidelines for appropriateness of revascularization?

Categories of appropriateness criteria

- Inappropriate
- Uncertain
- **Appropriate (but not mandated)**

ACCF/SCAI/STS/AATS/AHA/ASNC: Circulation 119:1330, 2009

BARI 2D participants met uncertain or appropriate criteria for each revascularization stratum

BARI 2D was conducted in the setting of aggressive risk factor management including 95% receiving statin therapy

Does Glycemic Control Explain the Apparent Benefit of Combined CABG and IS Therapy

	Mean 3-ye	Mean 3-year HbA1c		
	IS	IP		
PCI stratum				
Prompt	6.9±1.1	7.5±1.4		
Delayed	7.2±1.3	7.5±1.3		
CABG stratum	ו			
Prompt	6.9±1.1	7.4±1.3		
Delayed	7.1±1.4	7.5±1.4		
Does any other "on Rx" factor appear to be different in the CABG/IS subgroup? No				

BARI 2D Diabetes Implications

- Overall both insulin sensitizing and insulin providing approaches appear appropriate in BARI 2D eligible patients
- Further analyses will determine whether these strategies differ in other secondary outcomes

BARI 2D: Diabetes Management Implications

However there is suggestive evidence that IS therapy may have a number of potential advantages over IP

- The benefit of prompt CABG in terms of mortality/ CVD events appeared stronger in those receiving IS therapy
- IS therapy showed a borderline (P=0.06) benefit over IP in those receiving prompt revascularization
- HbA_{1c} target value was more frequently achieved in the IS group
- Severe hypoglycemia was less frequent in the IS group
- Weight and waist circumference change were less adverse in the IS group

Can Any Difference Between IS and IP CVD/Death Results be Explained by the Difference in HbA_{1c} Between Them?

Study	∆ HbA _{1c}	A CVD outcome
BARI 2D	0.5%	NS
ADVANCE	0.6%	NS
ACCORD	1.1%	NS
VADT	1.6%	NS

Achievement of HbA1c Goals in BARI 2D

Weight Gain, Waist Circumference Change and Severe Hypoglycemia by IS/IP Group

	IS	IP
Baseline weight (kg)	89.6±19.5	89.6±19.8
3-yr weight (kg)	89.9±21.1	91.7±20.7
Gain (kg)	0.3±8.6	2.1±7.4
Baseline waist circumference (cm)	108.0±14.4	107.6±13.7
3-yr waist circumference (cm)	107.7±15.4	109.1±14.2
Change (cm)	-0.1±9.1	+1.9±8.4
1+ severe hypoglycemia episode during trial (%)	5.9	9.2

Adjusted Odds Ratio of CABG Selection Among Multivessel Disease

BARI 2D Goals

Setting

 Intensive medical therapy: uniform control of glycemia, dyslipidemia, hypertension, angina, and lifestyle factors

Compare

 Prompt revascularization vs delayed or no revascularization

 Insulin sensitizing strategy vs an insulin providing strategy for glycemic management with target HbA_{1c} <7.0%

TT MAYO CLINIC

SYNTAX and Diabetes

- At one year, there is no death penalty associated with multivessel PCI
- At one year, there is no significant difference in death/MI/stroke between CABG and PCI
- The use of DES does not mitigate the adverse effect of diabetes

BARI 2D

Kim LJ et al: J Am Coll Cardiol Intv 2:384, 2009

The mayo clinic

Title/drp-author: WT/BK – Holmes, David Sub/drp-Job#: YW105/BK – 3038666

Subject: BARI 2D Kim

Background: BU3 Plot/brdr: open/BU41 x, y only Banner/brdr: 0-40-159/BU41 Side title: YW105 • /colhdgs: YW105 **PPT** shooting instructions Text: WT/BK **PPT File to Server** Highlight: YO114 (3 images) Subdue: BU31 Artist: mls Start Date: 4-12-10 Footnotes: BU41 **COLOR REFERENCE ONLY**

Match: Mayo2bu-2002 (CP1111378)

CARDia Trial

- Multicenter trial of 510 patients with MVD or single vessel complex disease
- Randomization to CABG (254) or PCI (256)
- Primary outcome measure: all cause mortality, MI and stroke
- Secondary outcome measure: all cause mortality, MI, stroke, repeat revascularization
- Noninferiority design

Journal of the American College of Cardiology © 2010 by the American College of Cardiology Foundation Published by Elsevier Inc.

CLINICAL RESEARCH

Clinical Trials

Conclusions: The CARDia (Coronary Artery Revascularization in Diabetes) trial is the first randomized trial of coronary revascularization in diabetic patients, but the 1-year results did not show that PCI is noninferior to CABG. However, the CARDia trial did show that multivessel PCI is feasible in patients with diabetes.

Baseline Clinical Characteristics of CARDia Trial Patients

	Total	CABG	PCI
Variable	n=510	n=254	n=256
Age (yr), mean (SD)	510	63.6 (9.1)	64.3 (8.5)
Male, no. (%)	509	197 (77.9)	181 (70.7)
BMI (kg/m²), mean (SD)	486	29.4 (5.3)	29.2 (4.9)
Admission type, no. (%)	510		
Acute		60 (23.6)	55 (21.5)
Elective		194 (76.4)	201 (78.5)
Diabetes status	510		
Type 1, no. (%)		17 (6.7)	8 (3.1)
Noninsulin treated, no. (%)		155 (60.9)	168 (65.5)
Insulin treated, no. (%)		99 (39.1)	88 (36.5)
Years with diabetes, mean (SD)	477	10.4 (9.6)	10.1 (9.6)

Kapur A et al: J Am Coll Cardiol 55:432, 2010

MAYO CLINIC

Baseline Clinical Characteristics of CARDia Trial Patients

Variable	Total n=510	CABG n=254	PCI n=256
Diseased vessels, no. (%)	510		
3-vessel disease		149 (59.7)	166 (64.8)
2-vessel disease		88 (34.7)	72 (28.1)
Bifurcation		5 (2.0)	2 (0.8)
Proximal LAD		12 (4.7)	16 (6.3)
Hx of renal impairment, no. (%)	508	10 (4.0)	14 (5.5)
PVD, no (%)	508	13 (5.2)	6 (2.4)
CVD Hx (stroke or TIA), no. (%)	508	12 (5.6)	8 (3.5)
EF (%), mean (SD)	256	60.0 (12.7)	59.1 (14.4)

Kapur A et al: J Am Coll Cardiol 55:432, 2010

MAYO CLINIC

Primary End Point Event-Free Survival CABG vs PCI

3038674-97

MACCE Event-Free Survival CABG vs PCI

3038674-98

Major End Points at 1 Year

Adjudicated events	CABG (n=248)		P((n=2	CI 254)		
post-randomization	No.	%	No.	%	Р	
Death	8	3.2	8	3.2	0.97	
Nonfatal MI	14	5.7	25	9.8	0.088	
Periprocedural MI	11	4.4	12	4.7	0.819	
Late MI*	3	1.2	14	5.5	0.016	
Nonfatal stroke	7	2.8	1	0.4	0.066	
Composite outcome of d, nonfatal MI, and nonfatal stroke at 1 yr: primary outcom	26 e	10.5	33	13.0	0.393	
Further revasc at 1 yr	5	2.0	30	11.8	<0.001	
Composite outcome of d, nonfatal MI, nonfatal stroke, and repeat revasc at 1 yr: secondary outcome	28	11.3	49	19.3	0.016	
TIMI major bleed	15	6.1	3	1.2	0.009	

*Late MI defined as occurring >7 days after index revasc proc Kapur A et al: J Am Coll Cardiol 55:432, 2010

Forest Plot of Death, Myocardial Infarction and Stroke in Key Subgroups

	Hazard ratio	HR (95% CI)
2 vessel disease		0.90 (0.36, 2.28)
3 vessel disease		1.42 (0.76, 2.67)
BMS group		2.99 (0.97, 9.16)
DES group		0.93 (0.51, 1.71)
No insulin		1.02 (0.51, 2.01)
Insulin treated		1.87 (0.76, 3.67)
Female		2.13 (0.68, 6.68)
Male		1.07 (0.59, 1.93)
<65 yr		1.04 (0.49, 2.17)
≥65 yr		1.48 (0.72, 3.05)
	0.50 1.00 2.00 4.00 Favors PCI Favors CABG	

Kapur A et al: J Am Coll Cardiol 55:432, 2010

Title/drp-author: WT/BK – Holmes, David Sub/drp-Job#: YW105/BK – 3038674

Subject: CARDia Trial, Kapur

Background: BU3 Plot/brdr: open/BU41 x, y only Banner/brdr: 0-40-159/BU41 Side title: YW105 • /colhdgs: YW105 **PPT** shooting instructions Text: WT/BK **PPT File to Server** Highlight: YO114 (7 images) Subdue: BU31 Start Date: 4-12-10 Artist: mls Footnotes: BU41 **COLOR REFERENCE ONLY**

Match: Mayo2bu-2002 (CP1111378)

The mayo clinic

"When 2 elephants fight, it is the grass that gets trampled"

African proverb

Diabetes Mellitus

I know what we do but the answers to the questions we ask keep changing

?????????????????

- Screening for ischemia
- Specific treatment regimen: IS vs IP
- Specific IS drug
- Revascularization versus medical therapy
- Specific revascularization strategy
- Adjunctive therapy after PCI

Systematic Review PCI vs CABG

• 23 randomized clinical trials • 5,019 patients assigned PCI • 4,944 patients assigned CABG Outcomes of interest Survival, myocardial infarction, stroke, angina, additional revascularization

Bravata: Ann Intern Med 147:703, 2007

CP1298619-6
5-Year Survival in Diabetics

Systematic Review PCI vs CABG

Diabetics

5-year survival: Higher by 2%
CABG but 95% bounds – 8.8%, 8.3%

Bravata: Ann Intern Med 147:703, 2007

MAYO CLINIC

CP1298619-12

CABG vs PCI Multivessal CAD

- Pooled individual patient data analysis
- 10 trials
- 7,812 patients
- Median FU 5.9 yrs
- Stratified random effects Cox proportional hazards models for all cause mortality

Mortality in Patients Assigned to Coronary Artery Bypass Graft or Percutaneous Coronary by Diabetes Status

Search Explore the graphics Help Watch ONE-MINUTE WORLD NEWS

Page last updated at 23:00 GMT, Wednesday, 8 July 2009 00:00 UK

E-mail this to a friend

🖶 Printable version

Tests raise life extension hopes

A drug discovered in the soil of a South Pacific island may help to fight the ageing process, research suggests.

When US scientists treated old mice with

Rapamycin was discovered on Easter Island

rapamycin it extended their expected lifespan by up to 38%.

The findings, published in the journal Nature, raise the prospect of being able to slow down the ageing process in older people.

CABG vs DES in Patients with Multivessel Disease and Diabetes

Name	N (DM pts)	De	esign	DES Type (%)	Death	Revasc	CVA
ARTS I/II*	255	Reg.	MVD	SES 100%	=	DES 个	DES \downarrow
Ben-Gal 06	518	Reg.	SVD & MVD	SES 100%	NR	DES 个	NR
Briguori 07	218	Reg.	SVD & MVD	SES 67, PES 33%	=	DES ↑	=
Lee 07	205	Reg.	MVD	SES 75, PES 11%	=	DES 个	DES↓
Mack 08	1450	Reg.	SVD & MVD	DES 73.1%	=	DES 个	NR
Park 08	891	Reg.	MVD	~SES 80, PES 20%	=	DES 个	NR
Yang 08	352	Reg.	MVD	SES & PES	=	DES 个	=
CARDia	510	RCT	SVD & MVD	SES 71, BMS 29%	=	DES 1	DES↓
FREEDOM	1394†	RCT	MVD	SES 51, PES 47%	?	?	?
		*Diabe	tic patients	from ARTS I & II (Macaya	EuroInterv	ention. 2006	:2:69-76)

MAYO CLINI

*Diabetic patients from ARTS I & II (Macaya, EuroIntervention. 2006;2:69-76) *As of 22 September 2008; Enrollment ongoing.

Serruys, ESC 2008

Death (All-Cause) at 12 Months

Death/CVA/MI at 12 Months

Murder

Parking Ticket

Higher 12-Month MACCE in Diabetics,* Driven by Revasc.

Summary: 12-Month Outcomes

- Patients without Diabetes
 - No significant difference in MACCE in CABG versus TAXUS
 - Increased revascularization in TAXUS
 - Increased stroke with CABG
- Patients with Diabetes

WO MAYO CLINIC

- Significantly increased MACCE with TAXUS, driven by increased revascularization
- Significantly increased mortality compared to nondiabetics in both CABG and TAXUS groups
- Revascularization rates in TAXUS are increased in diabetic patients compared to non-diabetics
- In CABG group, revascularization rates are comparable regardless of diabetic status

FREEDOM Trial

Future REvascularization Evaluation in patients with Diabetes mellitus: Optimal management of Multivessel disease

FREEDOM Recruitment

History of Present Illness

	Α	B
	(N=739)	(N=734)
Stable Coronary Heart Disease	67.1%	70.5%
Acute Coronary Syndrome (ACS)	32.9%	29.5%
ST elevation MI (>72 hrs prior to admission)	19.2%	17.8%
Non-ST elevation ACS	80.8%	82.2%
NYHA CHF Classification (Class III/IV excluded)		
Class I	74.0%	71.4%

PCI Procedure Summary

	PCI/DES
Staging: % unstaged procedure	66.2%
% staged procedure	33.8%
% staged procedures involving >1	71.2%
hospitalization	
Mean total # of lesions attempted across all stages	4.2 ± 1.5
Mean total # drug-eluting stents placed per patient (across all stages)	4.3 ± 1.8
Reopro used during index procedure (stage 1 for staged procedures)	49.7%
Heparin administered	83.9%
Bivalirudin administered	14.9%

Lesion Characteristics in PCI/DES Arm

	Lesions
Reference vessel diameter (mm):	
<2.5	16.4%
2.5-3.0	49.4%
3.0-3.5	25.4%
3.5-4.0	7.8%
>4.0	0.9%
Chronic total occlusion	4.8%
Bifurcation lesion	11.6%
Balloon angioplasty alone	3.6%
Direct stenting	28.5%

FREEDOM Trial

- Effect of PCI (DES) versus CABG on composite of all cause death, non fatal infarction and stroke with a minimum follow up of 2 years
- Evaluate the need for the secondary endpoint of repeat revascularization between PCI and CABG (N.B. difference from SYNTAX)
- Study the differences in Quality of Life and Cost Effectiveness between the two strategies
- Facilitate comparisons between performance of two DES in this patient group
- It will not tell us whether BARI 2D was right about revascularization versus optimal medical therapy

"In your case, Dave, there's a choice elective surgery, outpatient medical therapy, or whatever's in the box that our lovely Carol is holding."

MAYO CLINIC

PCI vs CABG MV Disease in Diabetics Conclusions

Clinical judgment still works

Primary Endpoint: 12-month MACCE Difference Non-inferiority analysis

CABRI (2VD 57%, 3VD 43%): MACCE difference 32%

ARTS I (2VD 66%, 3VD 33%): MACCE difference 14%

SYNTAX (3VD, LM): MACCE difference 5.5%

The criteria for non-inferiority comparison was not met for the primary endpoint, further comparisons for the LM and 3VD subgroups are observational only and hypothesis generating

Vessel Distribution in LM Population According to Syntax Score Terciles

Vessel Distribution in LM Population According to Syntax Score Terciles

MACCE to 2 Years by SYNTAX Score Tercile Low Scores (0-22)

	CABG	PCI
Death	4.9% <mark>></mark>	0.9%
CVA	4.1% >	0.9%
MI	2.0% <	3.6%
Death, CVA or MI	9.9% >	4.5%
Revasc.	10.1% <mark>></mark>	14.7%

KM Event rate \pm 1.5 SE, *chi-square or Fisher exact test

CABG (N=104)TAXUS (N=118)

[†]Patients with isolated LM or LM +1, +2 or +3 vessel disease Site-reported Data; ITT population

Vessel Distribution in LM Population According to Syntax Score Terciles

DIAD Study Screening in Type 2 Diabetes

- 1,123 patients with type 2 diabetes but no symptoms of CAD
- Random assignment to screening with MPI or not
- Main outcome of cardiac death or non fatal MI

DIAD Study

	No Screening N=562	Screening N=561
Age (yrs)	60.8	60.7
Duration DM (yrs)	8.9	8.2
BMI	31.0	31.1
HAIC	7.0	7.2
PVD	9.0	9.0

Young LH et al, JAMA 301:1547-1555, 2009

DIAD Study

	No Screening N=562	Screening N=561
Oral agents	64	63
Insulin	9	11
Insulin and oral	13	13
Diet	14	14

ORIGINAL CONTRIBUTION

Cardiac Outcomes After Screening for Asymptomatic Coronary Artery Disease in Patients With Type 2 Diabetes The DIAD Study: A Randomized Controlled Trial

Conclusion In this contemporary study population of patients with diabetes, the cardiac event rates were low and were not significantly reduced by MPI screening for myocardial ischemia over 4.8 years.

LMOST 200 MILLION PEOPLE worldwide have type 2 diabetes.⁴ Coronary artery disease (CAD) is a major health concern and the leading cause of death in individuals with type 2 diabetes.² CAD is often asymptomatic in these patients until the onset of myocardial infarction or sudden cardiac death.³ Type 2 diabetes is also widely recognized as a CAD risk equivalent.⁴

The current standard of care for type 2 diabetes emphasizes the reduction of cardiovascular risk factors.^{2,3} However, there has also been substantial interest in the early detection of asymptomatic CAD by screening of patients with type 2 diabetes.⁶ Recent studies have shown that CAD can be detected noninvasively in a significant number of these individuals.^{7,6} Inducible ischemia^{7,10,11} and coronary artery calcium^{9,11} each have diac deaths (3.0%) among the not-screened group (hazard ratio [HR], 0.88; 95% confidence interval [CI], 0.44–1.88; P=, 73). Of those in the screened group, 409 participants with normal results and 50 with small MPI defects had lower event rates than the 33 with moderate or large MPI defects; 0.4% per year vs 2.4% per year (HR, 6.3; 95% CI, 1.9–20.1; P=, 001). Nevertheless, the positive predictive value of having moderate or large MPI defects was only 12%. The overall rate of coronary revascularization was low in both groups: 31 (5.5%) in the screened group and 44 (7.2%) in the unscreened group (HR, 0.71; 95% CI, 0.45-11; P= 14). During the course of study there was a significant and equivalent increase in primary medical prevention in both

Conclusion In this contemporary study population of patients with diabetes, the cardiac event rates were low and were not significantly reduced by MPI screening for myocardial ischemia over 4.8 years.

Trial Registration clinicaltrials.gov Identifier: NCT00769275 JAMA. 2009:301(15):1547-1555

Author Affiliations: Department of Internal Medicine, Section of Cardiovascular Medicine (Drs Young and Wackers and Ms Davey) and Section of Endocrinology (Dr Inzucchi), Yale University School of Medicine, New Haven, Connecticut; College of Nursing at the College of Dentistry, New York University, New York (Dr Chyun); Department of Endocrinology, University of Virginia, Charlottesville (Dr Barrett); Médecine Nucléaire, University of Montreal, Montreal, Quebec, Canada (Dr Taillefer); Department of Cardiology, Hartford Hospital, Hartford

Connecticut (Dr Heller): Department of Cardiology, University of Alabama, Birmingham (Dr Iskandrian): Department of Endocrinology, University of Rochester, Rochester, New York (Dr Wittlin): Cardiology Consultants, Calgary, Alberta, Canada (Dr FilipChuk); and MedStar Research Institute, Washington, DC (Dr Ratner).

www.iama.com

Corresponding Author: Frans J. Th. Wackers, MD, PhD, Yale University School of Medicine, Section of Cardiovascular Medicine, 333 Cedar St, Fitkin-3, New Haven, CT 06520 (frans.wackers@yale.edu).

©2009 American Medical Association. All rights reserved.

(Reprinted with Corrections) JAMA, April 15, 2009-Vol 301, No. 15 1547

Follow-up Events

		Patie	nts			
	No screening n=562		Screening n=561			
	No.	%	No.	%	HR (95% CI)	P
Primary events	17	3.0	15	2.7	0.88 (0.44-1.8)	0.73
Myocardial infarction	10	1.7	7	1.3	0.82 (0.34-2.0)	0.66
Cardiac death	7	1.2	8	1.4	1.1 (0.41-3.1)	0.80
Secondary events	14	2.5	21	3.7	1.5 (0.77-3.0)	0.23
Unstable angina	3	0.5	4	0.7	1.3 (0.30-6.0)	0.70
Heart failure	7	1.2	7	1.2	1.0 (0.35-2.9)	0.99
Stroke	5	0.9	10	1.8	2.0 (0.69-5.9)	0.20
Revascularizations	44	7.8	31	5.5	0.71 (0.45-1.1)	0.14
PTCA	27	4.8	15	2.7	0.90 (0.48-1.7)	0.74
CABG surgery	20	3.6	16	2.9	0.81 (0.42-1.6)	0.76
Death						
All cause	15	2.7	18	3.2	1.2 (0.69-2.4)	0.60
Noncardiac	8	1.4	10	1.8	1.3 (0.49-3.2)	0.63

Young LH et al: JAMA 301(15):1547, 2009

Mean follow-up 4.8 yr Median follow-up 5.0 yr

Young LH et al: JAMA 301(15):1547, 2009

MAYO CLINIC

Cardiac Events by Screening Group

Screening Group

Events According to Findings of Screening Myocardial Perfusion Imaging (n=522)

r	Patients with normal imaging (n=409)	Small perfusion defect (n=50)	Moderate or large perfusion defect (n=33)	Nonperfusior abnormality (n=30)	
	Patient (%)	Patient (%)	Patient (%)	Patient (%)	Р
Patients	78	10	6	6	
Primary events	2.0	2.0	12.1	6.7	0.005
Myocardial infarctio	n 1.7		0	6.7	0.14
Cardiac death	0.5	2.0	12.1	3.3	<0.001
Secondary events	3.2	2.0	9.1	13.3	0.01
Unstable angina	0.2		3.0	6.7	<0.001
Heart failure	1.2		0	6.7	0.08
Stroke	1.7	2.0	6.1		0.31
Revascularizations	3.9	4.0	21.2	20.0	<0.001
РТСА	2.2	2.0	9.1	6.7	0.43
CABG surgery	1.7	2.0	12.1	13.3	0.001
Death					
All Cause	2.2	4.0	15.2	3.3	0.002
Noncardiac	1.7	2.0	3.0		0.90

Young LH et al: JAMA 301(15):1547, 2009
Follow-Up

	Patie		
	No screening n=562	Screening n=561	P
Additional cardiac testing	No. %	No. %	
Nonprotocol stress test	170 30	118 21	<0.001
Abnormal nonprotocol stress test	45 26	28 24	0.60
Coronary angiogram <120 d	3 0.5	25 4.4	<0.001
Revascularization <120 d	2 0.36	9 1.6	0.03
Total coronary angiograms	66 12	80 14	0.20
No. of vessels >70% stenosis			7
0	22 33	40 50	
1	21 32	11 14	0.05
2	13 20	19 23	
3	10 15	10 12	

Young LH et al: JAMA 301(15):1547, 2009

Medication Use

	Patients								
	Base	line	5 y	r	Base	line	5 yı	•	Р
	No.	%	No.	%	No.	%	No.	%	
Pharmacological treatment									
Insulin treatment	126	22	141	29	134	24	171	35	0.54
Oral anti-hyperglycemic agents	482	86	444	91	480	86	447	92	0.81
Lipid-lowering drugs	272	48	377	78	255	45	365	76	0.32
Statins	228	41	327	67	209	37	324	67	0.25
Antihypertensive drugs	320	57	362	75	315	56	355	74	0.79
ACE or angiotensin receptor blockers	229	41	218	45	206	37	210	43	0.17
Aspirin	261	46	356	73	241	43	364	74	0.24

Young LH et al: JAMA 301(15):1547, 2009

Title/drp-author: WT/BK – Holmes, David Sub/drp-Job#: YW105/BK - 3022700 Subject: DIAD Study, Young Background: BU3 Plot/brdr: open/BU41 x, y only Banner/brdr: 0-40-159/BU41 Side title: YW105 • /colhdgs: YW105 **PPT** shooting instructions **Text: WT/BK PPT File to Server** Highlight: YO114 (7 images) Subdue: BU31 Artist: KK Start Date: 11-10-09 Footnotes: BU41

> COLOR REFERENCE ONLY Match: Mayo2bu-2002 (CP1111378)

3022700-147

Problems with Bypass Surgery

- Morbidity of the procedure
- Saphenous vein grafts
- Acceleration of underlying native coronary disease
- Informed consent

Procedural Stroke Risk

Study year		Pick difference (95% CI)	
Procedural stroke	PCI	CABG	Nisk difference (55 % Ci)
ARTS, 2001	590/600	592/605	-
AWESOME, 2001	220/222	229/232	
BARI, 1996	913/915	907/914	
EAST, 1994	197/198	191/194	
ERACI II,2001	225/225	223/225	<mark></mark>
GABI, 1994	182/182	175/177	
Drenth et al, 2002	50/51	51/51	_
Diegeler et al, 2002	110/110	109/110	—
MASS, 1995	72/72	70/70	
MASS II, 2004	203/205	197/203	
Octostent, 2003	138/138	142/142	
Cisowski et al, 2002	50/50	50/50	
RITA, 1992	509/510	496/501	- - -
Hong et al, 2005	119/119	69/70	
SIMA, 2000	62/63	60/60	
Overall	3,640/3,660	3,561/3,604	♦

-0.10 -0.05 0.00 0.05 0.10

More strokes

with PCI

CP1298619-2

More strokes

with CABG

Ann Int Med 147:708, 2007

MAYO CLINIC

"Ha! That finishes it!...I always knew he'd be back one day to get the other one!"

Problems with Bypass Surgery

- Morbidity of the procedure
- Saphenous vein grafts
- Acceleration of underlying native coronary disease
- Informed consent

What Surgeons Do Not Tell You

- I am going to put you to sleep
- I am going to put a small hose into your breathing tube and breathe for you. I will also put a smaller tube somewhat lower for drainage
- I am going to divide your breast bone with a saw and then singe the ends to stop bleeding and then spread open your chest
- I am going to pick up and and then stop your heart

What the Surgeon Does Not Tell You

- I am going to make a long cut in your leg and remove veins
- I am going to do some hookups in your chest
- I am going to then take baling wire to put you back together again
- I am going to wake you up and tell you that everything is GREAT!

"Great" appears to be a relative term

MAYO CLINIC

3 Vessel & Left Main Disease Post SYNTAX

"I hate this place."

"It was back in '52 that the hits stopped coming."

"More quarters! For God's sake, more quarters!"

Lesion Severity in Native Vessels before Treatment

Lesion Severity in Native Vessels 6 Months after Treatment

The son of Enoch and the father of Lamech (father of Noah), whom he fathered at the age of 187. "And all the days of Methuselah were nine hundred sixty and nine years: and he died in the year of the Great Flood".

The BARI 2D Study Group Event Rates at 5 Years

Death from Any Cause

Variable	Revasc	Medical Therapy	P
All patients (n=1828)			
Insulin sensitization (%)	11.1	12.3	0.81
Insulin provision (%)	12.2	12.0	0.85
P value	0.75	0.90	0.78
PCI stratum (n=1065)			
Insulin sensitization (%)	10.2	10.1	0.67
Insulin provision (%)	11.4	10.3	0.56
P value	0.79	0.94	0.92
CABG stratum (n=763)			
Insulin sensitization (%)	13.4	17.1	0.34
Insulin provision (%)	13.9	15.6	0.67
P value	0.83	0.71	0.72
P MAYO CLINIC			

NEJM 360:2503, 2009

The BARI 2D Study Group Event Rates at 5 Years

Major Cardiovascular Events

Variable	Revasc	Medical Therapy	P
All patients (n=1828)			
Insulin sensitization (%)	20.3	24.1	0.29
Insulin provision (%)	25.2	24.1	0.63
P value	0.059	0.85	0.23
PCI stratum (n=1065)			
Insulin sensitization (%)	21.1	20.4	0.36
Insulin provision (%)	24.9	21.7	0.28
P value	0.30	0.51	0.84
CABG stratum (n=763)			
Insulin sensitization (%)	18.7	32.0	0.002
Insulin provision (%)	26.0	29.0	0.58
P value	0.066	0.51	0.07

NEJM 360:2503, 2009

Title/drp-author: WT/BK – Holmes, David Sub/drp-Job#: YW105/BK – 3009346

Subject: BARI 2D NEJM 2009

Background: BU3 Banner/brdr: BU2/BU41 Side title: YW105 • /colhdgs: YW105 Text: WT/BK Highlight: Y0114 Subdue: BU31 Footnotes: BU41 Plot/brdr: open/BU41 x, y only

PPT shooting instructions PPT File to Server (2 images)

Artist: mls

Start Date: 6-26-09

COLOR REFERENCE ONLY Match: Mayo2bu-2002 (CP1111378)

The Bypass Angioplasty Revascularization Investigation 2 Diabetes Trial

BARI 2D Trial

Presented at the American Diabetes Association (ADA) Annual Scientific Sessions 2009 in New Orleans

Copyleft Clinical Trial Results. You Must Redistribute Slides

- 5745 STEMI patients with planned primary PCI
- 128 (2.2%) had prior CABG
- Evaluate 90 day clinical outcomes

Characteristics	No Prior CABG (n=5617)	Prior CABG (n=128)	Р
Age, yrs, median (IQR)	61 (52, 71)	69 (58.3, 76)	<0.001
Female, n (%)	1306 (23.3)	18 (14.1)	0.014
Hypertension, n (%)	2749 (49.0)	90 (70.3)	<0.001
Prior MI, n (%)	612 (10.9)	82 (64.1)	<0.001
Prior PCI, n (%)	881 (9.2)	32 (36.7)	<0.001
Prior CHF, n (%)	187 (3.3)	21 (16.4)	<0.001
DM, n (%)	187 (15.7)	32 (25.0)	0.007

	No Prior CABG (n=5617)	Prior CABG (n=128)	P
90-Day Clinical Outcomes, n (%)			
Death	256 (4.6)	15 (11.9)	0.001
CHF	267 (4.8)	8 (6.3)	0.4
Shock	188 (3.3)	8 (6.3)	0.082
Death/CHF/Shock	565 (10.1)	21 (16.4)	0.019

Welsh (under review)

Angio & Revasc Characteristics	No Prior CABG (n=5617)	Prior CABG (n=128)	P
Primary PCI, n (%)	5272 (93.9)	101 (78.9))	<0.001
No urg revasc (no urg csurg or primPCI), n (%)	242 (5.0)	24 (18.8)	<0.001
Post PCI TIMI flow, n (%) in those with primPCI	N=5272	N=101	<0.001
0/1	110 (2.1)	6 (6.2)	<0.001
2	328 (6.3)	11 (11.3)	<0.001
3	4800 (91.6)	80 (82.5)	<0.001

Prior CABG patients with STEMI are less likely to undergo acute reperfusion, have worse angiographic outcomes following primary PCI and higher 90-day mortality. These findings are especially applicable when the IRA was a bypass graft.

90-Day Mortality According to Prior CABG

90-Day Death/CHF/Shock According to Prior CABG

Associations Between Prior CABG and 90-Day Clinical Outcomes

90-Day Mortality According to Prior CABG – Graft vs Native IRA

90-Day Death/CHF/Shock According to Prior CABG – Graft vs Native IRA

Adjusted Associations Between Prior CABG – Graft vs Native IRA and 90-Day Clinical Outcomes

Title/drp-author: WT/BK – Holmes, David Sub/drp-Job#: YW105/BK – 3010788

Apex Prior CABG Figures

Background: BU3 Banner/brdr: BU2/BU41 Side title: YW105 • /colhdgs: YW105 Text: WT/BK Highlight: Y0114 Subdue: BU31 Footnotes: BU41 Plot/brdr: open/BU41 x, y only

PPT shooting instructions PPT File to Server (6 images)

Artist: DV

Start Date: 7-9-09

COLOR REFERENCE ONLY Match: Mayo2bu-2002 (CP1111378)
Intended Mode of Revascularization by Number of Diseased Vessels

MAYO CLINIC

BARI 2D Randomization 2 x 2 Factorial Design

		Ischemic control strategy			
		Prompt revasc	Medical		
Glucose	Insulin provision	592	593	1,185	
strategy	Insulin sensitization	584	599	1,183	
		1,176	1,192	2,368	

BARI 2D in the Context of Current Clinical Practice and Recent Trials

How does glycemic drug use during BARI 2D (% of patients) compare to general use in USA?

			USA*		
Ba	aseline	IS	IP	Overall	2008
Metformin	54	75	10	42	64
TZDs	19	62	4	33	23
Sulfonylureas	53	18	52	35	40
Insulin	28	28	62	44	28

*Data courtesy Medco and ADA Based on 3,213,000 prescriptions

T MAYO CLINIC

BARI 2D in the Context of Current Clinical Practice and Recent Trials COURAGE Trial

- Our PCI results are consistent with the results from COURAGE, in which the majority of participants did not have diabetes
- COURAGE did not study CABG further BARI2D analyses will address the effect of PCI on angina

BARI 2D in the Context of Current Clinical Practice and Recent Trials

Intensive glycemic control trials (ADVANCE, ACCORD and VADT)

 BARI 2D does not address the question of intensive glycemic control as all subjects were treated with a target A_{1C} of <7.0%

TZD (rosiglitazone) therapy

- BARI 2D assessed therapeutic strategies rather than any specific drug
- No safety concerns were seen for the IS group in which over 60% were using TZD's, predominately rosiglitazone
- These results are thus consistent with RECORD

Effect of Insulin Sensitizing vs Insulin Providing Strategy on Death/Non-Fatal MI or Stroke Among Patients Assigned to Prompt Revascularization

Do the Results of BARI 2D Suggest Any Changes Should be Made to Current Diabetes Management Practices?

 In general, no, as significant IS vs IP differences were not demonstrated

 However, adoption of an IS strategy could be considered in those undergoing revascularization and needing improved glycemic control

Conclusions

- In patients with type 2 diabetes and stable CAD with documented ischemia, mortality does not differ according to either prompt or delayed revascularization strategies or by diabetes management strategies of insulin provision or sensitization
- In appropriately chosen type 2 diabetic patients, CABG is superior to aggressive medical therapy alone in reducing the combined incidence of death, non-fatal MI and non-fatal stroke

Final Lesson from BARI 2D

Therapeutic decisions regarding management of the CAD and glycemia in type 2 diabetes should be made jointly by the patient's cardiologist, diabetologist and/or primary care physician

Title/drp-author: WT/BK – Holmes, David Sub/drp-Job#: YW105/BK – 3010909

Subject: BARI presentation

Background: BU3 Banner/brdr: BU2/BU41 Side title: YW105 '/colhdgs: YW105 Text: WT/BK Highlight: YO114 Subdue: BU31 Footnotes: BU41 Plot/brdr: open/BU41 x, y only

PPT shooting instructions PPT File to Server (57 images)

Artist: mls

Start Date: 7-10-09

COLOR REFERENCE ONLY Match: Mayo2bu-2002 (CP1111378)

PCI vs CABG: New vs Old Technology

Sources: Cordis Database, Morgan Stanley

WAYO CLINIC

PCI vs CABG Mortality

Holmes DR Jr., Berger PB: compelx Intervention. Textbook of Interventional Cardiology, 4th Edition, Topol EJ, editor, 2003:201-22

1-Year Rates of Repeat Revascularization in 4 CABG vs Stent Assisted PCI Trials

Mercado et al: J Thoracic Cardiovasc Surg, 2005

PREVENT 4

Patients

	CA edifo (n=1	CABG + edifoligide (n=1508)		CABG + placebo (n=1506)	
Type of event	No.	%	No.	%	
Atrial fibrillation	379	25.1	402	26.7	
Perioperative MI in CABG surgery	145	9.6	149	9.9	
Renal failure	49	3.2	50	3.3	
Bleeding requiring reoperation	40	2.7	36	2.4	
Pneumonia	33	2.2	37	2.5	
Stroke	28	1.9	18	1.2	
Adult respiratory distress syndrome	10	0.7	16	1.1	
Mediastinitis	9	0.6	12	8.0	
Pulmonary embolism	12	0.8	5	0.3	

SYNTAX 1-Year Clinical Outcomes

Original Article

Drug-Eluting Stents vs. Coronary-Artery Bypass Grafting in Multivessel Coronary Disease

Edward L. Hannan, et al N Engl J Med, Volume 358(4):331-341, Jan 24, 2008

Mortality (after adjustment) 7.3% for DES Vs. 6.0% for CABG This 1.3% absolute difference (P=0.03) yields a NNT of 77

If we need to do 77 bypasses to save one life, I believe the mortality benefit is clinically meaningless! This point was completely missed by the lay press

The NEW ENGLAND JOURNAL of MEDICINE

SYNTAX Trial Design

3011192-197

SYNTAX 1-Year Clinical Outcomes

3011192-198

Adverse Events to 12 Months Left Main Subset

Safety at 12 Months (Death/CVA/MI) Left Main Subset

ITT population; presented by Dr. Serruys: TCT 2008

The safety and effectiveness of the TAXUS® Express® Stent System have not been established in the following patient populations: lesions located in the unprotected left main coronary artery or patients with multi-vessel disease

Revascularizations at 12 Months Left Main Subset

ITT population; presented by Dr. Serruys: TCT 2008

The safety and effectiveness of the TAXUS® Express® Stent System have not been established in the following patient populations: lesions located in the unprotected left main coronary artery or patients with multi-vessel disease

Adverse Events to 12 Months Left Main Subset

Generic QOL and Utilities

3011102-203

Total 1-Year Costs

MAYO CLINIC

Higher 12-Month MACCE in Diabetics* Driven by Revascularization

Medically treated diabetics; presented by Dr. Dawkins: TCT 2008 The TAXUS® Express® Stent System has not been specifically indicated for pateints with diabetes

Death/CVA/MI at 12 Months Diabetic Subgroups

3011192-206

MACCE to 12 Months vs SYNTAX Score™

MACCE to 12 Months by SYNTAX Score Tertile High Score (33+)

	CABG	PCI	P	LM Subset
Death	4.1%	9.7%	0.06	P=0.008
CVA	3.4%	0.8%	0.22	25.3% e 8 30 -
MI	6.0%	7.6%	0.65	
Death, CVA or MI	10.8%	14.1%	0.40	$\begin{bmatrix} 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
Revasc	4.9%	17.8%	0.001	Months since allocation

MACCE to 12 Months by SYNTAX Score Tertile High Score (33+)

	CABG	PCI	P		-0	3VD Subset
Death	1.2%	6.5%	0.02	/ent	50 - 40 -	P=0.002
CVA	1.2%	0.0%	0.50	ve ev (%)	30 -	21.5%
MI	1.9%	6.5%	0.04	ulativ rate	20 -	
Death, CVA or MI	4.3%	9.7%	0.07	Cum	- 10 0 -	6 12
Revaso	5.1%	16.6%	0.001			Months since allocation

Title/drp-author: WT/BK – Holmes, David Sub/drp-Job#: YW105/BK – 3011192

Subject: Teirstein Presentation

Background: BU3 Banner/brdr: BU2/BU41 Side title: YW105 • /colhdgs: YW105 Text: WT/BK Highlight: YO114 Subdue: BU31 Footnotes: BU41 Plot/brdr: open/BU41 x, y only

PPT shooting instructions PPT File to Server (28 image)

Artist: KK

Start Date: 7-14-09

COLOR REFERENCE ONLY Match: Mayo2bu-2002 (CP1111378)

58% Average Restenosis Rate in Diabetes **Following POBA**

Vandormael (1987) Lambert (1988) **Quigley (1989)** Ellis (1989) Macdonald (1990) Bourassa (1991) Weintraub (1993) Rabbini (1994) Lefevre (1994) Van Belle (1997) Levine (1997) Van Belle (1998)

GO MAYO CLINIC

J Am Coll Cardiol 1999;34:476-485

Restenosis Increased in Diabetes Following BMS Implantation

6-Month Rates

J Am Coll Cardiol 1998;32:1866-1873

Diabetes Also Increases Mortality After Bare Metal Stenting

J Am Coll Cardiol 1998;32:1866-1873

What About Diabetic Patients with 3-Vessel and/or Left Main Disease?

- Current guidelines recommend CABG
- Estimated 34% of patients with Class I indications for CABG receive PCI in the DES era

What is the optimal treatment?

J Am Coll Cardiol 2008;51:172-209 Circulation 2007;116ll:795

BARI - 7 Year Survival

Survival-Patients without Treated Diabetes

Amount of Disease BARI vs SYNTAX

	BARI	SYNTAX
3VD	44%	71%
LMCA	0	29%
# sig. lesions	3.4	4.6
Diffuse disease	?	13.4%
1-yr survival	90%	92%*

*Death/CVA/MI
COURAGE Trial What are the Lessons?

Medical therapy needs to be <u>optimal</u>, closely followed, specific metrics of treatment objectives

Mortality in Type 2 Diabetes Multifactorial Intervention

- STENO-2 study randomly assigned 160 patients with type 2 diabetes and micro-albuminuria to conventional therapy or intensive therapy
- Targets:
 - HAIC <6.5%
 - Cholesterol <175
 - Triglycerides <150
 - BP <130/80
- Approach tight glucose regulation, RAS blockers, ASA, lipid lowering agents
- Primary endpoint all cause mortality at 13.3 yrs

Risk of Death

Risk of any cardiovascular event

Risk of Death

Clinical Implications

- A central approach to optimizing outcome of all diabetic patients is optimal control.
- By optimizing control, we can optimize the results of any revascularization strategy

BARI 2D

- Multicenter RCT 49 sites
- 2,368 patients with type 2 diabetes and stable CAD
- Randomization to revascularization (CABG or PCI) vs standardized medical therapy
- Primary endpoint cardiovascular events

What are the outstanding issues?

Diabetes

- Acute myocardial infarction
- Chronic total occlusion
- LMCA or MVD
- Dual antiplatelet therapy

BARI 2D Trial: Study Design

2368 patients with mild to moderate CAD and Type 2 diabetes prior to randomization. Prospective. Randomized. Mean follow-up 5.3 years

Primary Endpoint: Death (from any cause)

Secondary Endpoint: Composite of Death, MI, or Stroke

BARI 2D Study Group, NEJM 2009

